Introduction
Isoreader supports several dual inlet IRMS data formats. This
vignette shows some of the functionality for dual inlet data files. For
additional information on operations more generally (caching, combining
read files, data export, etc.), please consult the operations
vignette. For details on downstream data processing and
visualization, see the isoprocessor package.
Reading files
Reading dual inlet files is as simple as passing one or multiple file
or folder paths to the iso_read_dual_inlet()
function. If
folders are provided, any files that have a recognized continuous flow
file extensions within those folders will be processed (e.g. all
.did
and .caf
). Here we read several files
that are bundled with the package as examples (and whose paths can be
retrieved using the iso_get_reader_example()
function).
continuous_flow_example.cf |
continuous flow |
Isodat |
Continuous Flow file format (older) |
continuous_flow_example.dxf |
continuous flow |
Isodat |
Continuous Flow file format (newer) |
continuous_flow_example.iarc |
continuous flow |
ionOS |
Continuous Flow data archive |
dual_inlet_example.caf |
dual inlet |
Isodat |
Dual Inlet file format (older) |
dual_inlet_example.did |
dual inlet |
Isodat |
Dual Inlet file format (newer) |
dual_inlet_nu_example.txt |
dual inlet |
Nu |
Dual Inlet file format |
background_scan_example.scn |
scan |
Isodat |
Scan file format |
full_scan_example.scn |
scan |
Isodat |
Scan file format |
peak_shape_scan_example.scn |
scan |
Isodat |
Scan file format |
time_scan_example.scn |
scan |
Isodat |
Scan file format |
# read dual inlet examples
di_files <-
iso_read_dual_inlet(
iso_get_reader_example("dual_inlet_example.did"),
iso_get_reader_example("dual_inlet_example.caf"),
iso_get_reader_example("dual_inlet_nu_example.txt"),
nu_masses = 49:44
)
#> Info: preparing to read 3 data files (all will be cached)...
#> Info: reading file 'dual_inlet_example.did' from cache...
#> Info: reading file 'dual_inlet_example.caf' from cache...
#> Info: reading file 'dual_inlet_nu_example.txt' with '.txt' reader...
#> Info: finished reading 3 files in 0.78 secs
File summary
The di_files
variable now contains a set of isoreader
objects, one for each file. Take a look at what information was
retrieved from the files using the iso_get_data_summary()
function.
dual_inlet_example.did |
dual_inlet_example.did |
NA |
7 cycles, 6 ions (44,45,46,47,48,49) |
16 entries |
standards, resistors |
dual_inlet_example.caf |
dual_inlet_example.caf |
NA |
8 cycles, 6 ions (44,45,46,47,48,49) |
22 entries |
standards, resistors |
dual_inlet_nu_example.txt |
dual_inlet_nu_example.txt |
NA |
82 cycles, 6 ions (44,45,46,47,48,49) |
9 entries |
no method info |
Problems
In case there was any trouble with reading any of the files, the
following functions provide an overview summary as well as details of
all errors and warnings, respectively. The examples here contain no
errors but if you run into any unexpected file read problems, please
file a bug report in the isoreader issue
tracker.
Detailed file information can be aggregated for all isofiles using
the iso_get_file_info()
function which supports the full select
syntax of the dplyr
package to specify which columns are of interest (by default, all file
information is retrieved). Additionally, file information from different
file formats can be renamed to the same column name for easy of
downstream processing. The following provides a few examples for how
this can be used (the names of the interesting info columns may vary
between different file formats):
# all file information
di_files |> iso_get_file_info(select = c(-file_root)) |> knitr::kable()
#> Info: aggregating file info from 3 data file(s), selecting info columns 'c(-file_root)'
dual_inlet_example.did |
dual_inlet_example.did |
NA |
2014-10-27 11:23:54 |
134446 |
158 |
1 |
1 |
1 |
CIT Carrara |
13 |
49077 |
CO2_multiply_16V.met |
Peak Center found at [61032] , Background: 8.87
mV,11.31 mV,12.98 mV,6.40 mV,1.90 mV,5.88 mV (old253), PressAdjust: L:
15972.5 R: 15971.6 ( Manual Adjustment ) |
26 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.caf |
dual_inlet_example.caf |
NA |
2017-07-03 22:57:57 |
651704 |
1 |
NA |
NA |
NA |
2H6 |
CARBO IIIUvU_Clump.met |
16068 |
CARBO IIIUvU_Clump.met |
NA |
26 |
NA |
113 |
9 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_nu_example.txt |
dual_inlet_nu_example.txt |
NA |
2017-02-21 17:46:17 |
309491 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
ETH-01 |
3480 |
C:Stable 4-20-8-20.rdf |
# select file information
di_files |>
iso_get_file_info(
select = c(
# rename sample id columns from the different file types to a new ID column
ID = `Identifier 1`, ID = `Sample Name`,
# select columns without renaming
Analysis, Method, `Peak Center`,
# select the time stamp and rename it to `Date & Time`
`Date & Time` = file_datetime,
# rename weight columns from the different file types
`Sample Weight`, `Sample Weight` = `Weight [mg]`
),
# explicitly allow for file specific rename (for the new ID column)
file_specific = TRUE
) |> knitr::kable()
#> Info: aggregating file info from 3 data file(s), selecting info columns 'c(ID = `Identifier 1`, ID = `Sample Name`, Analysis, Method, `Peak Center`, `Date & Time` = file_datetime, `Sample Weight`, `Sample Weight` = `Weight [mg]`)'
dual_inlet_example.did |
CIT Carrara |
49077 |
CO2_multiply_16V.met |
1 |
2014-10-27 11:23:54 |
NA |
dual_inlet_example.caf |
2H6 |
16068 |
CARBO IIIUvU_Clump.met |
NA |
2017-07-03 22:57:57 |
113 |
dual_inlet_nu_example.txt |
ETH-01 |
NA |
NA |
NA |
2017-02-21 17:46:17 |
3480 |
Select/Rename
Rather than retrieving specific file info columns using the above
example of iso_get_file_info(select = ...)
, these
information can also be modified across an entire collection of isofiles
using the iso_select_file_info()
and
iso_rename_file_info()
functions. For example, the above
example could be similarly achieved with the following use of
iso_select_file_info()
:
# select + rename specific file info columns
di_files2 <- di_files |>
iso_select_file_info(
ID = `Identifier 1`, ID = `Sample Name`, Analysis, Method,
`Peak Center`, `Date & Time` = file_datetime,
`Sample Weight`, `Sample Weight` = `Weight [mg]`,
file_specific = TRUE
)
#> Info: selecting/renaming the following file info:
#> - for 1 file(s): 'file_id', 'Identifier 1'->'ID', 'Analysis', 'Method', 'Peak Center', 'file_datetime'->'Date & Time'
#> - for 1 file(s): 'file_id', 'Identifier 1'->'ID', 'Analysis', 'Method', 'Peak Center', 'file_datetime'->'Date & Time', 'Weight [mg]'->'Sample Weight'
#> - for 1 file(s): 'file_id', 'Sample Name'->'ID', 'file_datetime'->'Date & Time', 'Sample Weight'
# fetch all file info
di_files2 |> iso_get_file_info() |> knitr::kable()
#> Info: aggregating file info from 3 data file(s)
dual_inlet_example.did |
CIT Carrara |
49077 |
CO2_multiply_16V.met |
1 |
2014-10-27 11:23:54 |
NA |
dual_inlet_example.caf |
2H6 |
16068 |
CARBO IIIUvU_Clump.met |
NA |
2017-07-03 22:57:57 |
113 |
dual_inlet_nu_example.txt |
ETH-01 |
NA |
NA |
NA |
2017-02-21 17:46:17 |
3480 |
Filter
Any collection of isofiles can also be filtered based on the
available file information using the function
iso_filter_files
. This function can operate on any column
available in the file information and supports full dplyr
syntax.
# find files that have 'CIT' in the new ID field
di_files2 |> iso_filter_files(grepl("CIT", ID)) |>
iso_get_file_info() |>
knitr::kable()
#> Info: applying file filter, keeping 1 of 3 files
#> Info: aggregating file info from 1 data file(s)
dual_inlet_example.did |
CIT Carrara |
49077 |
CO2_multiply_16V.met |
1 |
2014-10-27 11:23:54 |
# find files that were run in 2017
di_files2 |>
iso_filter_files(`Date & Time` > "2017-01-01" & `Date & Time` < "2018-01-01") |>
iso_get_file_info() |>
knitr::kable()
#> Info: applying file filter, keeping 2 of 3 files
#> Info: aggregating file info from 2 data file(s)
dual_inlet_example.caf |
2H6 |
16068 |
CARBO IIIUvU_Clump.met |
NA |
2017-07-03 22:57:57 |
113 |
dual_inlet_nu_example.txt |
ETH-01 |
NA |
NA |
NA |
2017-02-21 17:46:17 |
3480 |
Mutate
The file information in any collection of isofiles can also be
mutated using the function iso_mutate_file_info
. This
function can introduce new columns and operate on/overwrite any existing
columns available in the file information (even if it does not exist in
all files) and supports full dplyr
syntax. It can also be used in conjunction with
iso_with_unit
to generate values with implicit units.
di_files3 <- di_files2 |>
iso_mutate_file_info(
# update existing column
ID = paste("ID:", ID),
# introduce new column
`Run in 2017?` = `Date & Time` > "2017-01-01" & `Date & Time` < "2018-01-01",
# parse weight as a number and turn into a column with units
`Sample Weight` = `Sample Weight` |> parse_number() |> iso_with_units("mg")
)
#> Info: mutating file info for 3 data file(s)
di_files3 |>
iso_get_file_info() |>
iso_make_units_explicit() |>
knitr::kable()
#> Info: aggregating file info from 3 data file(s)
dual_inlet_example.did |
ID: CIT Carrara |
49077 |
CO2_multiply_16V.met |
1 |
2014-10-27 11:23:54 |
NA |
FALSE |
dual_inlet_example.caf |
ID: 2H6 |
16068 |
CARBO IIIUvU_Clump.met |
NA |
2017-07-03 22:57:57 |
113 |
TRUE |
dual_inlet_nu_example.txt |
ID: ETH-01 |
NA |
NA |
NA |
2017-02-21 17:46:17 |
3480 |
TRUE |
Add
Additionally, a wide range of new file information can be added in
the form of a data frame with any number of columns (usually read from a
comma-separated-value/csv file or an Excel/xlsx file) using the function
iso_add_file_info
and specifying which existing file
information should be used to merge in the new information. It is
similar to dplyr’s
left_join but with additional safety checks and the possibility to
join the new information sequentially as illustrated below.
# this kind of information data frame is frequently read in from a csv or xlsx file
new_info <-
dplyr::bind_rows(
# new information based on new vs. old samples
dplyr::tribble(
~Analysis, ~`Run in 2017?`, ~process, ~info,
NA, TRUE, "yes", "2017 runs",
NA, FALSE, "yes", "other runs"
),
# new information for a single specific file
dplyr::tribble(
~Analysis, ~process, ~note,
"16068", "no", "did not inject properly"
)
)
new_info |> knitr::kable()
NA |
TRUE |
yes |
2017 runs |
NA |
NA |
FALSE |
yes |
other runs |
NA |
16068 |
NA |
no |
NA |
did not inject properly |
# adding it to the isofiles
di_files3 |>
iso_add_file_info(new_info, by1 = "Run in 2017?", by2 = "Analysis") |>
iso_get_file_info(select = !!names(new_info)) |>
knitr::kable()
#> Info: adding new file information ('process', 'info', 'note') to 3 data file(s), joining by 'Run in 2017?' then 'Analysis'...
#> - 'Run in 2017?' join: 2/2 new info rows matched 3/3 data files - 1 of these was/were also matched by subsequent joins which took precedence
#> - 'Analysis' join: 1/1 new info rows matched 1/3 data files
#> Info: aggregating file info from 3 data file(s), selecting info columns 'Analysis', 'Run in 2017?', 'process', 'info', 'note'
dual_inlet_example.did |
49077 |
FALSE |
yes |
other runs |
NA |
dual_inlet_example.caf |
16068 |
TRUE |
no |
NA |
did not inject properly |
dual_inlet_nu_example.txt |
NA |
TRUE |
yes |
2017 runs |
NA |
Parse
Most file information is initially read as text to avoid cumbersome
specifications during the read process and compatibility issues between
different IRMS file formats. However, many file info columns are not
easily processed as text. The isoreader package therefore provides
several parsing and data extraction functions to facilitate processing
the text-based data (some via functionality implemented by the readr package). See code block
below for examples. For a complete overview, see the
?extract_data
and ?iso_parse_file_info
documentation.
# use parsing and extraction in iso_mutate_file_info
di_files2 |>
iso_mutate_file_info(
# change type of Peak Center to logical
`Peak Center` = parse_logical(`Peak Center`),
# retrieve first word of Method column
Method_1st = extract_word(Method),
# retrieve second word of Method column
Method_2nd = extract_word(Method, 2),
# retrieve file extension from the file_id using regular expression
extension = extract_substring(file_id, "\\.(\\w+)$", capture_bracket = 1)
) |>
iso_get_file_info(select = c(extension, `Peak Center`, matches("Method"))) |>
knitr::kable()
#> Info: mutating file info for 3 data file(s)
#> Info: aggregating file info from 3 data file(s), selecting info columns 'c(extension, `Peak Center`, matches("Method"))'
dual_inlet_example.did |
did |
TRUE |
CO2_multiply_16V.met |
CO2 |
multiply |
dual_inlet_example.caf |
caf |
NA |
CARBO IIIUvU_Clump.met |
CARBO |
IIIUvU |
dual_inlet_nu_example.txt |
txt |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
49077 |
CO2_multiply_16V.met |
1 |
2014-10-27 11:23:54 |
NA |
dual_inlet_example.caf |
2H6 |
16068 |
CARBO IIIUvU_Clump.met |
NA |
2017-07-03 22:57:57 |
113 |
# use iso_parse_file_info for simplified parsing of column data types
di_files2 |>
iso_parse_file_info(
integer = Analysis,
number = `Sample Weight`,
logical = `Peak Center`
) |>
iso_get_file_info() |>
knitr::kable()
#> Info: parsing 3 file info columns for 3 data file(s):
#> - to integer: 'Analysis'
#> - to logical: 'Peak Center'
#> - to number: 'Sample Weight'
#> Info: aggregating file info from 3 data file(s)
dual_inlet_example.did |
CIT Carrara |
49077 |
CO2_multiply_16V.met |
TRUE |
2014-10-27 11:23:54 |
NA |
dual_inlet_example.caf |
2H6 |
16068 |
CARBO IIIUvU_Clump.met |
NA |
2017-07-03 22:57:57 |
113 |
dual_inlet_nu_example.txt |
ETH-01 |
NA |
NA |
NA |
2017-02-21 17:46:17 |
3480 |
Resistors
Additionally, some IRMS data files contain resistor information that
are useful for downstream calculations (see e.g. section on signal
conversion later in this vignette):
dual_inlet_example.did |
1 |
3.000000e+08 |
44 |
dual_inlet_example.did |
2 |
3.000000e+10 |
45 |
dual_inlet_example.did |
3 |
1.000000e+11 |
46 |
dual_inlet_example.did |
4 |
1.000000e+12 |
47 |
dual_inlet_example.did |
5 |
5.000000e+11 |
48 |
dual_inlet_example.did |
6 |
1.000000e+12 |
49 |
dual_inlet_example.caf |
1 |
2.970297e+08 |
44 |
dual_inlet_example.caf |
2 |
1.500000e+10 |
45 |
dual_inlet_example.caf |
3 |
5.000000e+10 |
46 |
dual_inlet_example.caf |
4 |
5.000000e+11 |
47 |
dual_inlet_example.caf |
5 |
9.900990e+09 |
48 |
dual_inlet_example.caf |
6 |
5.000000e+11 |
49 |
Reference values
As well as isotopic reference values for the different gases:
# reference delta values without ratio values
di_files |> iso_get_standards(file_id:reference) |> knitr::kable()
#> Info: aggregating standards info from 3 data file(s)
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 13C/12C |
-3.56 |
VPDB |
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 18O/16O |
25.01 |
VSMOW |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 13C/12C |
-2.82 |
VPDB |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 18O/16O |
-4.67 |
VPDB |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 47CO2/44CO2 |
0.00 |
None |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 48CO2/44CO2 |
0.00 |
None |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 49CO2/44CO2 |
0.00 |
None |
# reference values with ratios
di_files |> iso_get_standards() |> knitr::kable()
#> Info: aggregating standards info from 3 data file(s)
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 13C/12C |
-3.56 |
VPDB |
C |
R 13C/12C |
0.0111802 |
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 13C/12C |
-3.56 |
VPDB |
O |
R 18O/16O |
0.0020672 |
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 13C/12C |
-3.56 |
VPDB |
O |
R 17O/16O |
0.0003860 |
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 18O/16O |
25.01 |
VSMOW |
H |
R 2H/1H |
0.0001558 |
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 18O/16O |
25.01 |
VSMOW |
O |
R 17O/16O |
0.0003799 |
dual_inlet_example.did |
Caltech-1960C |
CO2 |
d 18O/16O |
25.01 |
VSMOW |
O |
R 18O/16O |
0.0020052 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 13C/12C |
-2.82 |
VPDB |
C |
R 13C/12C |
0.0111802 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 13C/12C |
-2.82 |
VPDB |
O |
R 18O/16O |
0.0020672 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 13C/12C |
-2.82 |
VPDB |
O |
R 17O/16O |
0.0003860 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 18O/16O |
-4.67 |
VPDB |
C |
R 13C/12C |
0.0111802 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 18O/16O |
-4.67 |
VPDB |
O |
R 18O/16O |
0.0020672 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 18O/16O |
-4.67 |
VPDB |
O |
R 17O/16O |
0.0003860 |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 47CO2/44CO2 |
0.00 |
None |
NA |
NA |
NA |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 48CO2/44CO2 |
0.00 |
None |
NA |
NA |
NA |
dual_inlet_example.caf |
CO2clump tank |
CO2 |
d 49CO2/44CO2 |
0.00 |
None |
NA |
NA |
NA |
Raw Data
The raw data read from the IRMS files can be retrieved similarly
using the iso_get_raw_data()
function. Most data
aggregation functions also allow for inclusion of file information using
the include_file_info
parameter, which functions
identically to the select
parameter of the
iso_get_file_info
function discussed earlier.
# get raw data with default selections (all raw data, no additional file info)
di_files |> iso_get_raw_data() |> head(n=10) |> knitr::kable()
#> Info: aggregating raw data from 3 data file(s)
dual_inlet_example.did |
standard |
0 |
15946.42 |
19001.94 |
21960.62 |
2513.280 |
29.78742 |
-181.2712 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
1 |
15941.14 |
18995.66 |
21954.19 |
2512.345 |
29.80048 |
-180.9752 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
2 |
15933.54 |
18986.64 |
21943.58 |
2511.280 |
29.81818 |
-180.7748 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
3 |
15916.58 |
18966.34 |
21919.97 |
2508.497 |
29.78074 |
-180.4583 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
4 |
15901.62 |
18948.60 |
21899.17 |
2506.104 |
29.76304 |
-180.2311 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
5 |
15896.00 |
18941.97 |
21891.49 |
2505.600 |
29.75818 |
-180.3095 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
6 |
15884.63 |
18928.51 |
21876.19 |
2503.555 |
29.72923 |
-180.2013 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
standard |
7 |
15875.89 |
18918.12 |
21863.96 |
2502.444 |
29.69513 |
-180.0340 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
sample |
1 |
15955.18 |
19122.71 |
22237.99 |
2559.245 |
31.09436 |
-181.2460 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
dual_inlet_example.did |
sample |
2 |
15945.64 |
19111.16 |
22224.65 |
2557.857 |
31.09153 |
-180.9976 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
# get specific raw data and add some file information
di_files |>
iso_get_raw_data(
# select just time and the two ions
select = c(type, cycle, v44.mV, v45.mV),
# include the Analysis number fron the file info and rename it to 'run'
include_file_info = c(run = Analysis)
) |>
# look at first few records only
head(n=10) |> knitr::kable()
#> Info: aggregating raw data from 3 data file(s), selecting data columns 'c(type, cycle, v44.mV, v45.mV)', including file info 'c(run = Analysis)'
dual_inlet_example.did |
49077 |
standard |
0 |
15946.42 |
19001.94 |
dual_inlet_example.did |
49077 |
standard |
1 |
15941.14 |
18995.66 |
dual_inlet_example.did |
49077 |
standard |
2 |
15933.54 |
18986.64 |
dual_inlet_example.did |
49077 |
standard |
3 |
15916.58 |
18966.34 |
dual_inlet_example.did |
49077 |
standard |
4 |
15901.62 |
18948.60 |
dual_inlet_example.did |
49077 |
standard |
5 |
15896.00 |
18941.97 |
dual_inlet_example.did |
49077 |
standard |
6 |
15884.63 |
18928.51 |
dual_inlet_example.did |
49077 |
standard |
7 |
15875.89 |
18918.12 |
dual_inlet_example.did |
49077 |
sample |
1 |
15955.18 |
19122.71 |
dual_inlet_example.did |
49077 |
sample |
2 |
15945.64 |
19111.16 |
Data Processing
The isoreader package is intended to make raw stable isotope data
easily accessible. However, as with most analytical data, there is
significant downstream processing required to turn these raw signal
intensities into properly referenced isotopic measurement. This and
similar functionality as well as data visualization is part of the isoprocessor package which
takes isotopic data through the various corrections in a transparent,
efficient and reproducible manner.
That said, most vendor software also performs some of these
calculations and it can be useful to be able to compare new data
reduction procedures against those implemented in the vendor software.
For this purpose, isoreader retrieves vendor computed data tables
whenever possible, as illustrated below.
Vendor Data Table
As with most data retrieval functions, the
iso_get_vendor_data_table()
function also allows specific
column selection (by default, all columns are selected) and easy
addition of file information via the include_file_info
parameter (by default, none is included).
dual_inlet_example.did |
1 |
3.3287770 |
37.330647 |
2.1929917 |
37.366456 |
6.202321 |
1.108056 |
0.2075809 |
NA |
NA |
NA |
dual_inlet_example.did |
2 |
3.3209553 |
37.311799 |
2.1852948 |
37.347605 |
6.192886 |
1.108048 |
0.2075772 |
NA |
NA |
NA |
dual_inlet_example.did |
3 |
3.3263384 |
37.317514 |
2.1908570 |
37.353314 |
6.195743 |
1.108054 |
0.2075783 |
NA |
NA |
NA |
dual_inlet_example.did |
4 |
3.3200304 |
37.317207 |
2.1841057 |
37.353021 |
6.195597 |
1.108047 |
0.2075782 |
NA |
NA |
NA |
dual_inlet_example.did |
5 |
3.3187408 |
37.329768 |
2.1822644 |
37.365600 |
6.201893 |
1.108045 |
0.2075808 |
NA |
NA |
NA |
dual_inlet_example.did |
6 |
3.3177548 |
37.322849 |
2.1814601 |
37.358675 |
6.198427 |
1.108044 |
0.2075794 |
NA |
NA |
NA |
dual_inlet_example.did |
7 |
3.3217518 |
37.318368 |
2.1859087 |
37.354180 |
6.196176 |
1.108049 |
0.2075785 |
NA |
NA |
NA |
dual_inlet_example.caf |
1 |
0.7000753 |
7.543204 |
0.4669423 |
7.550236 |
6.316518 |
NA |
NA |
15.65910 |
22.50135 |
-58.12863 |
dual_inlet_example.caf |
2 |
0.6846506 |
7.518991 |
0.4512997 |
7.526031 |
6.304043 |
NA |
NA |
15.62094 |
22.59733 |
-54.25812 |
dual_inlet_example.caf |
3 |
0.6827013 |
7.503826 |
0.4497784 |
7.510853 |
6.296221 |
NA |
NA |
15.56356 |
22.81077 |
-52.21288 |
dual_inlet_example.caf |
4 |
0.6940694 |
7.513421 |
0.4616176 |
7.520432 |
6.301158 |
NA |
NA |
15.64200 |
23.18259 |
-66.43734 |
dual_inlet_example.caf |
5 |
0.6748151 |
7.499821 |
0.4414657 |
7.506862 |
6.294164 |
NA |
NA |
15.56706 |
22.81533 |
-67.80591 |
dual_inlet_example.caf |
6 |
0.6836593 |
7.492892 |
0.4512181 |
7.499905 |
6.290578 |
NA |
NA |
15.65654 |
23.33585 |
-66.66771 |
dual_inlet_example.caf |
7 |
0.6960376 |
7.491672 |
0.4645483 |
7.498654 |
6.289934 |
NA |
NA |
15.56031 |
23.89354 |
-42.32076 |
dual_inlet_example.caf |
8 |
0.6929899 |
7.499328 |
0.4609894 |
7.506326 |
6.293888 |
NA |
NA |
15.45959 |
24.43994 |
-48.39355 |
# get specific parts and add some file information
di_files |>
iso_get_vendor_data_table(
# select cycle and all carbon columns
select = c(cycle, matches("C")),
# include the Identifier 1 fron the file info and rename it to 'id'
include_file_info = c(id = `Identifier 1`)
) |> knitr::kable()
#> Info: aggregating vendor data table from 3 data file(s), including file info 'c(id = `Identifier 1`)'
dual_inlet_example.did |
CIT Carrara |
1 |
3.3287770 |
37.330647 |
2.1929917 |
1.108056 |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
2 |
3.3209553 |
37.311799 |
2.1852948 |
1.108048 |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
3 |
3.3263384 |
37.317514 |
2.1908570 |
1.108054 |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
4 |
3.3200304 |
37.317207 |
2.1841057 |
1.108047 |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
5 |
3.3187408 |
37.329768 |
2.1822644 |
1.108045 |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
6 |
3.3177548 |
37.322849 |
2.1814601 |
1.108044 |
NA |
NA |
NA |
dual_inlet_example.did |
CIT Carrara |
7 |
3.3217518 |
37.318368 |
2.1859087 |
1.108049 |
NA |
NA |
NA |
dual_inlet_example.caf |
2H6 |
1 |
0.7000753 |
7.543204 |
0.4669423 |
NA |
15.65910 |
22.50135 |
-58.12863 |
dual_inlet_example.caf |
2H6 |
2 |
0.6846506 |
7.518991 |
0.4512997 |
NA |
15.62094 |
22.59733 |
-54.25812 |
dual_inlet_example.caf |
2H6 |
3 |
0.6827013 |
7.503826 |
0.4497784 |
NA |
15.56356 |
22.81077 |
-52.21288 |
dual_inlet_example.caf |
2H6 |
4 |
0.6940694 |
7.513421 |
0.4616176 |
NA |
15.64200 |
23.18259 |
-66.43734 |
dual_inlet_example.caf |
2H6 |
5 |
0.6748151 |
7.499821 |
0.4414657 |
NA |
15.56706 |
22.81533 |
-67.80591 |
dual_inlet_example.caf |
2H6 |
6 |
0.6836593 |
7.492892 |
0.4512181 |
NA |
15.65654 |
23.33585 |
-66.66771 |
dual_inlet_example.caf |
2H6 |
7 |
0.6960376 |
7.491672 |
0.4645483 |
NA |
15.56031 |
23.89354 |
-42.32076 |
dual_inlet_example.caf |
2H6 |
8 |
0.6929899 |
7.499328 |
0.4609894 |
NA |
15.45959 |
24.43994 |
-48.39355 |
For expert users: retrieving all data
For users familiar with the nested data frames from the tidyverse (particularly tidyr’s nest
and
unnest
), there is an easy way to retrieve all data from the
iso file objects in a single nested data frame:
all_data <- di_files |> iso_get_all_data()
#> Info: aggregating all data from 3 data file(s)
# not printed out because this data frame is very big
Saving collections
Saving entire collections of isofiles for retrieval at a later point
is easily done using the iso_save
function which stores
collections or individual isoreader file objects in the efficient R data
storage format .rds
(if not specified, the extension
.di.rds
will be automatically appended). These saved
collections can be conveniently read back using the same
iso_read_dual_inlet
command used for raw data files.
# export to R data archive
di_files |> iso_save("di_files_export.di.rds")
#> Info: exporting data from 3 iso_files into R Data Storage 'di_files_export.di.rds'
# read back the exported R data storage
iso_read_dual_inlet("di_files_export.di.rds")
#> Info: preparing to read 1 data files (all will be cached)...
#> Info: reading file 'di_files_export.di.rds' with '.di.rds' reader...
#> Info: loaded 3 data files from R Data Storage
#> Info: finished reading 1 files in 0.08 secs
#> Data from 3 dual inlet iso files:
#> # A tibble: 3 × 6
#> file_id file_path_ file_subpath raw_data file_info method_info
#> <chr> <chr> <chr> <glue> <chr> <chr>
#> 1 dual_inlet_example.did dual_inle… NA 7 cycle… 16 entri… standards,…
#> 2 dual_inlet_example.caf dual_inle… NA 8 cycle… 22 entri… standards,…
#> 3 dual_inlet_nu_example.… dual_inle… NA 82 cycl… 9 entries no method …
Data Export
At the moment, isoreader supports export of all data to Excel and the
Feather file format
(a Python/R cross-over format). Note that both export methods have
similar syntax and append the appropriate file extension for each type
of export file (.di.xlsx
and .di.feather
,
respectively).